Acute in vitro hypoxia and high-altitude (4,559 m) exposure decreases leukocyte oxygen consumption.

نویسندگان

  • Vitalie Faoro
  • Bruno Fink
  • Sarah Taudorf
  • Christoph Dehnert
  • Marc M Berger
  • Erik R Swenson
  • Damian M Bailey
  • Peter Bärtsch
  • Heimo Mairbäurl
چکیده

Hypoxia impairs metabolic functions by decreasing activity and expression of ATP-consuming processes. To separate hypoxia from systemic effects, we tested whether hypoxia at high altitude affects basal and PMA-stimulated leukocyte metabolism and how this compares to acute (15 min) and 24 h of in vitro hypoxia. Leukocytes were prepared at low altitude and ∼24 h after arrival at 4559 m. Mitochondrial oxygen consumption (JO₂) was measured by respirometry, oxygen radicals by electron spin resonance spectroscopy, both at a Po₂ = 100 mmHg (JO₂,₁₀₀) and 20 mmHg (JO₂,₂₀). Acute hypoxia of leukocytes decreased JO₂ at low altitude. Exposure to high altitude decreased JO₂,₁₀₀, whereas JO₂,₂₀ was not affected. Acute hypoxia of low-altitude samples decreased the activity of complexes I, II, and III. At high altitude, activity of complexes I and III were decreased when measured in normoxia. Stimulation of leukocytes with PMA increased JO₂,₁₀₀ at low (twofold) and high altitude (five-fold). At both locations, PMA-stimulated JO₂ was decreased by acute hypoxia. Basal and PMA-stimulated reactive oxygen species (ROS) production were unchanged at high altitude. Separate in vitro experiments performed at low altitude show that ∼75% of PMA-induced increase in JO₂ was due to increased extra-mitochondrial JO₂ (JO₂(,res); in the presence of rotenone and antimycin A). JO₂(,res) was doubled by PMA. Acute hypoxia decreased basal JO₂(,res) by ∼70% and PMA-stimulated JO₂(,res) by about 50% in cells cultured in normoxia and hypoxia (1.5% O₂; 24 h). Conversely, 24 h in vitro hypoxia decreased mitochondrial JO₂,₁₀₀ and JO₂,₂₀, extra-mitochondrial, basal, and PMA-stimulated JO₂ were not affected. These results show that 24 h of high altitude but not 24 h in vitro hypoxia decreased basal leukocyte metabolism, whereas PMA-induced JO₂ and ROS formation were not affected, indicating that prolonged high-altitude hypoxia impairs mitochondrial metabolism but does not impair respiratory burst. In contrast, acute hypoxia impairs respiratory burst at either altitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electroretinographic assessment of retinal function at high altitude.

Although hypoxia plays a key role in the pathophysiology of many common and well studied retinal diseases, little is known about the effects of high-altitude hypoxia on retinal function. The aim of the present study was to assess retinal function during exposure to high-altitude hypoxia using electroretinography (ERG). This work is related to the Tübingen High Altitude Ophthalmology (THAO) stud...

متن کامل

Acute mountain sickness is related to nocturnal hypoxemia but not to hypoventilation.

The purpose of the study was to investigate determinants of acute mountain sickness after rapid ascent to high altitude. A total of 21 climbers were studied ascending from <1,200 m to Capanna Regina Margherita, a hut in the Alps at 4,559 m, within <24 h. During their overnight stay at 4,559 m, breathing patterns and ventilation were recorded by calibrated respiratory inductive plethysmography a...

متن کامل

Disturbed eating at high altitude: influence of food preferences, acute mountain sickness and satiation hormones.

PURPOSE Hypoxia has been shown to reduce energy intake and lead to weight loss, but the underlying mechanisms are unclear. The aim was therefore to assess changes in eating after rapid ascent to 4,559 m and to investigate to what extent hypoxia, acute mountain sickness (AMS), food preferences and satiation hormones influence eating behavior. METHODS Participants (n = 23) were studied at near ...

متن کامل

Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension

With rising altitude the partial pressure of oxygen falls. This phenomenon leads to hypobaric hypoxia at high altitude. Since more than 140 million people permanently live at heights above 2500 m and more than 35 million travel to these heights each year, understanding the mechanisms resulting in acute or chronic maladaptation of the human body to these circumstances is crucial. This review sum...

متن کامل

High altitude impairs nasal transepithelial sodium transport in HAPE-prone subjects.

High-altitude pulmonary oedema (HAPE) occurs in predisposed individuals at altitudes >2,500 m. Defective alveolar fluid clearance secondary to a constitutive impairment of the respiratory transepithelial sodium transport contributes to its pathogenesis. Hypoxia impairs the transepithelial sodium transport in alveolar epithelial type II cells in vitro. If this impairment is also present in vivo,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2011